35 research outputs found

    An Analytical Review of Sustainable Green Buildings in Qatar: Implementations in the Architecture, Engineering and Construction (AEC) Sector

    Get PDF
    Sustainable buildings and related construction techniques are becoming increasingly recognized within the urban planning development in Qatar. The study aims to develop an analytical review of sustainable green projects in several countries to highlight the main sustainable green buildings principles and techniques. In addition, the study aims to propose a set of recommendations that facilitate and improve the green building principles implementation in Qatar. The methodology is based on qualitative approach in collecting data about the sustainable green buildings besides highlighting existing relevant projects from different countries. Moreover, analyzing the green building assessments systems to review their classification and technique. The analysis reveals that sustainability is witnessing a growing awareness in the construction domain in Qatar and many countries, which is leading to a prominent attention to develop green buildings and sustainable construction industries. The discussion indicates some perplexed opinions related to green buildings issues, such as the cost. Therefore, the present paper mentions that green building approaches still need further knowledge across stakeholders to demonstrate the various benefits of green buildings, primarily the energy efficiency to promote best practices. Consequently, the paper addresses the need for a governmental legislation to ensure implementing green buildings as a step forward on sustainability implementation in the AEC (Architecture, Engineering and Construction) sector in Qatar

    The Challenges and Future Aspirations of Implementing Global Sustainability Assessment System (GSAS) in the Urban Facilities of Mega Sport Events [MSEs] in Qatar

    Get PDF
    Sports facilities are built for a specific function and purpose. Once the demand for such purpose no longer exists, it is important to know how both the buildings and the city will adapt to the existence of such megastructures as to prevent turning them into ‘white elephants’ in the city. This paper aims to study the environmental impact assessment tools and techniques used in promoting and implementing sustainability in mega sports projects in Qatar. The investigation focuses on assessing the cultural impact of the architectural design of sports facilities in Qatar using the global sustainability assessment system (GSAS) as a sustainability/EIA assessment tool. Most of the sports facilities in Qatar are GSAS-certified at the design and build (D&B) level and are ongoing their operational assessment. Data collection involves desktop and literature review of the current Qatar EIA methods. The findings of this paper include an objective overview of the global sustainability assessment system (GSAS) and its linkage to holistic sustainability. The recommendations involve the inclusion of mixed-methods analysis to integrate the long-lost concept of ‘culture’ in the realm of sustainability to prove that behind the modern exteriors of these newly-built structures lies a deep culture and a vernacular tradition. This study would be significant in the region and worldwide and a promising overview of utilizing local tools on an international level

    A dynamic approach for evacuees’ distribution and optimal routing in hazardous environments

    Get PDF
    © 2018 Elsevier B.V. In a complex built environment, the situation changes rapidly during an emergency event. Typically, available systems rely heavily on a static scenario in the calculation of safest routes for evacuation. In addition, egress route calculation and evacuation simulations are performed separately from path-finding for rescue teams. In this paper, we propose a state-of-the-art dynamic approach, which deals not only with a 3D environment, shape of spaces and hazard locations, but also with the dynamic distribution of occupants during evacuation. A database of densities and information about hazard influence are generated and used to calculate optimal paths for rescue teams. Three simulation scenarios were rigorously compared in this study, namely static with constant density values determined for subsequent stages of evacuation, semi-dynamic with densities representing an actual people distribution in a building during evacuation simulation, and dynamic with temporal distribution of evacuees stored in a database, and dynamically used in optimal path calculations. The findings revealed that static simulation is significantly different from semi-dynamic and dynamic simulations, and each type of simulation is better suited for the decision task at hand. These results have significant implications on achieving a rapid and safe evacuation of people during an emergency event

    Conceptual Framework for Planning Urban Roadside Vegetation to Enhance Air Quality for Roadside Users

    Get PDF
    Vegetation is known for enhancing air quality. However, vegetation on urban roads can either increase or decrease exposure to air pollutants. The health of pedestrians and cyclists is particularly of great concern since they are exposed directly to air pollutants, unlike drivers. Dispersion of air pollutants is necessary for exposure reduction on urban roads. The local factors, including street geometry, meteorological conditions, and physical characteristics of vegetation, influence the dispersion of pollutants. There is a lack of framework for planning urban road vegetation to disperse air pollutants. This study summarizes the literature on the influence of local factors; analyses the interrelation between the local factors on the dispersion of air pollutants by trees and hedgerows. It provides a conceptual framework to provide clarity in planning urban roadside vegetation to enhance the air quality for roadside users

    Edge HVAC analytics

    Get PDF
    Integrating data analytics, optimisation and dynamic control to support energy services has seen significant interest in recent years. Larger appliances used in an industry context are now provided with Internet of Things (IoT)-based interfaces that can be remotely monitored, with some also provided with actuation interfaces. The combined use of IoT and edge computing enables connectivity between energy systems and infrastructure, providing the means to implement both energy efficiency/optimisation and cost reduction strategies. We investigate the economic implications of harnessing IoT and edge/cloud technologies to support energy management for HVAC (Heating, Ventilation and Air Conditioning) systems in buildings. In particular, we evaluate the cost savings for building operations through energy optimisation. We use a real use case for energy optimisation as identified in the EU “Sporte2” project (focusing on the energy optimisation of sports facilities) and explore several scenarios in relation to costs and energy optimisation

    Life Cycle Assessment of Tall Buildings in Qatar, A focus on Construction Materials Use and Techniques

    Get PDF
    Buildings represent one of the most significant sources of negative impacts to the natural ecosystems on which Qatar's inhabitants health and environmental quality depend. The market has identified Qatar as one of the busiest construction areas in the world (Ibrahim 2011), While rapid economic development, population growth, and construction boom are positive indicators of growth, they may also present issues related to the negative impact on the socio-environmental components of cities. Such is the case of the Gulf Cooperation Council (GCC) countries where increasing economic prosperity has led to a surge in tall building construction and a sense of competition to erect the tallest skyscrapers in the world (Mahgoub and Abarra 2012). While tall buildings are a source of national pride and cultural identity enabled by economic prosperity, they pose several challenges to integrate with the urban fabric of the city while also having a tremendous environmental impact. Tall buildings are especially massive consumers of energy (Ali and Armstrong 2008). They are the dominant elements in urban architecture due to their scale and purpose, and should be the focus of sustainable design. With large number of towers constructed and to be constructed in Al Dafna and West Bay areas of Doha, these buildings affect different aspects of the built and urban environment, i.e., city image, traffic, urban spaces and physical conform. Therefore, more architectural design strategies have to be planned well ahead in order to tackle the issues of sustainability and adaptability to climate change and to foster sustainable built environment in the state of Qatar. With Qatar slated to host a 'zero carbon' World Cup in 2022, Qatar Green Building Council (QGBC) has set up a group to foster green infrastructure as a national resource. Qatar is utilizing Leadership in Energy and Environmental Design (LEED) and the Global/Qatar Sustainability Assessment System (GSAS/QSAS) to this end. Furthermore, shortages in raw materials between 2013 and 2017 are expected to challenge the construction sector, as the period is expected to be the peak for the sector. Therefore, the sector will have to bridge the gap during this period by mutual agreements with the companies in Saudi Arabia and the UAE (QCB 2012). The objectives of this paper are as follows: 1- to Identify sustainability metrics for tall buildings with focus on construction materials and methods used in Qatar; 2- Explore existing literature and identify analogies in optimization consistent with design variables; 3- to examine sustainability of construction materials used in Qatar by utilizing software which is based on currently available databases to perform life cycle assessment. To meet the objectivess described above, the currently available software platforms to perform life cycle analysis of building materials were explored. A commercial software, SimaPro, which utilizes the environmental impact database Ecoinvent, was chosen for its flexibility in defining custom mix designs for concrete, as well as database information on steel and many other building materials. With SimaPro, a sustainability model for concrete and steel was developed which reflects the environmental implications of manufacture of materials in Qatar as appropriate. Quantitative results from the model for the sustainability of constituents of building materials were extracted, to form the basis of sustainability metrics in the forthcoming tall building topology optimization protocol. Furthermore, Blanco-Carrasco et al (2010) outline reduced use of Portland cement, increased use of alternate cementitious materials, and reduced water use to improve the sustainability of the concrete industry in Qatar. Using structural models and the SimaPro model, ultra-high performance concrete was explored as a potential solution for all these problems, to be applied in the gravity/lateral structural components of Qatar tall buildings. In addition to identifying a novel material which fits well with the current tall building designs of the region, the process of examining the structural and environmental improvements from using ultra-high performance concrete has resulted in the formation of a procedure to compare multiple materials used in Qatar.qscienc

    Crossing Roads of Federated Learning and Smart Grids: Overview, Challenges, and Perspectives

    Full text link
    Consumer's privacy is a main concern in Smart Grids (SGs) due to the sensitivity of energy data, particularly when used to train machine learning models for different services. These data-driven models often require huge amounts of data to achieve acceptable performance leading in most cases to risks of privacy leakage. By pushing the training to the edge, Federated Learning (FL) offers a good compromise between privacy preservation and the predictive performance of these models. The current paper presents an overview of FL applications in SGs while discussing their advantages and drawbacks, mainly in load forecasting, electric vehicles, fault diagnoses, load disaggregation and renewable energies. In addition, an analysis of main design trends and possible taxonomies is provided considering data partitioning, the communication topology, and security mechanisms. Towards the end, an overview of main challenges facing this technology and potential future directions is presented

    Bio-Facades; An Innovative Design Solution Towards Sustainable Architecture in Hot Arid Zones

    Get PDF
    The Arabian Gulf is a semi-enclosed sea with very high evaporation and low discharge rates resulting in extreme saline and thermal conditions. Additionally the system is characterized by a weak hydrodynamic flushing resulting in pollutant build-up over time. As a result, compared to open marine systems, added stress imposed by pollutants is likely to have severe consequences. Qatar has witnessed a rapid expansion in coastal development, linked to its industrial and population growth in recent decades. While economically and socially valuable, the growth comes with an associated environmental cost and Qatar's marine environment now faces many pressures including eutrophication, inputs of domestic sewage, discharge of industrial waste and the resuspension of sediment due to coastal construction. Although the threats pose to biota inhabiting Qatar's marine environment are evident, their extent has yet to be fully assessed. A large percentage of contaminants in the aquatic environment consist of potentially (directly or indirectly) genotoxic, carcinogenic and mutagenic substances. A genotoxin can modify the genetic material at non lethal and non cytotoxic concentrations and has often belated effects which are significantly important at the population and community levels. Genotoxins have particularly high ecotoxicological relevance in situations of chronic exposure to low doses and to multiple contaminants (e.g. in case of PAHs rich tarballs arriving in the shorelines), raising he need to establish genotoxicological profiles of the ecosystems. Indeed several regulatory developments such as: EU – Marine Strategy Framework Directive, the or US – Environmental Protection Agency – Integrated Risk Information System have stressed explicitly on the need of the detection and assessment of potential carcinogenic and mutagenic toxicants using genotoxicity endpoints. The analysis of cytogenetic endpoints in organisms exposed to contaminants in their natural environment contributes significantly to the early detection of genotoxic damage. The relevance of cytogenetic parameters and atypical cytogenetic features, such as numerical chromosomal abnormalities, i.e. aneuploidy, have largely proven their relevance as alerting indicators of poor environmental health and relevant biomarkers for the early detection of environmental stressors. The use of marine invertebrates for in situ environmental assessment is a widely accepted method for identifying risks to the ecosystems. Moreover, at the DNA and chromosome levels they express qualitatively similar types of induced damage to that found in higher organism (e.g. numerical and structural chromosomal aberrations). In this study, we aimed to take a step towards Qatar's marine sustainability by assessing the health status of the marine environment, and providing early alerting symptoms of degradation, by having as specific objectives: i) to measure the levels, in abiotic (water, sediments) and a marine invertebrate model species, of various anthropogenic contaminants (metals, polycyclic aromatic hydrocarbons, (PAHs) and Total polyaromatic hydrocarbons (TPH) at 3 selected sites around the Qatari coast, ii) measure the biological response at the chromosome level, and iii) determine the main drivers of genotoxicity through a multivariate analysis in order to establish a first partial genotoxicological profile of the Qatar Marine Zone. The 3 selected sampling sites, with expected different levels and sources of pollution were: South of Al Khor, Al Wakra harbor and South of Doha harbor. Two sampling campaigns were performed, one in summer and one in winter, to evaluate the role of the abiotic parameters, among others, on the bioavailability of the studied contaminants. The native pearl oyster Pinctada radiata was selected as model and surrogate species due to, its wide distribution along the Qatari coast, filter feeder and sessile mode of life and to its ability as a bivalve to bioaccumulate pollutants. Chemical analyses of the main trace metals and hydrocarbons were performed in water, sediment and P. radiata samples. The evaluation of the aneuploidy levels in P. radiata was estimated in 25–30 animals from each sampling site and season, by counting the total number of aneuploid metaphases over 30 metaphases counted per individual. The evaluation of the aneuploidy level on Pinctada radiata from the three sampling sites revealed an occurrence of significantly higher levels in Al-Wakra harbor (17% in summer and 20% in winter) and South of Doha harbor (19% in summer and 17% in winter), when compared to Al Khor (5% in summer cand 7% in winter). No statistically significant differences were observed between seasons in each location. In order to investigate the discrepancy between sampling sites and seasons with respect to all estimated descriptors and to evaluate the relationship between all the studied parameters, a principal component analysis (PCA) was performed. Aneuploidy levels were highly correlated to mercury and PAHs levels in the bivalve tissue. Moreover, the higher aneuploidy levels registered at Al Wakra harbor (both seasons) and Doha harbor (summer) showed a high correlation with the contaminants levels in P. radiata tissues. South of Al Khor (in both sampling seasons) was highly positively correlated with Cadmium (Cd), although this contamination was not responsible for a significant increase of the aneuploidy levels. The studied genotoxic contaminants were found to be highly variable among considered locations and between sampling seasons. Indeed, the 6 observations (contaminants levels among three sampling sites at two sampling seasons) differ substantially, no site or sampling season grouping being observed, which suggests an important spatial and temporal variability of the bioaccumulation of pollutants into P. radiata tissues. The aneuploidy levels, however, were consistently different among sampled locations, but did not differ between the two sampling seasons, suggesting that aneuploidy is the consequence of a local chronic contamination, and not a direct response to the temporal variability of the contaminants in P. radiata tissues. The results of this study confirm the suitability of the cytogenetic endpoints to discriminate, categorize the studied sites as regards to their level of contamination, underlining the added value of the detection of the genotoxicity levels in the marine environment to environmental health assessment and mitigation research programs. Further studies should be developed, under the specific hydrological and toxicological conditions of the Qatar Marine Zone (QMZ), to better explain the underlining mechanisms of such genotoxicity in the local filter feeders. The establishment of a Genotoxicological profile of the QMZ would be a valuable contribution to a wider approach on environmental diagnosis or prognosis, contributing to the protection and sustainability of the QMZ natural habitats and resources.qscienc

    AI-big data analytics for building automation and management systems: a survey, actual challenges and future perspectives

    Get PDF
    In theory, building automation and management systems (BAMSs) can provide all the components and functionalities required for analyzing and operating buildings. However, in reality, these systems can only ensure the control of heating ventilation and air conditioning system systems. Therefore, many other tasks are left to the operator, e.g. evaluating buildings’ performance, detecting abnormal energy consumption, identifying the changes needed to improve efficiency, ensuring the security and privacy of end-users, etc. To that end, there has been a movement for developing artificial intelligence (AI) big data analytic tools as they offer various new and tailor-made solutions that are incredibly appropriate for practical buildings’ management. Typically, they can help the operator in (i) analyzing the tons of connected equipment data; and; (ii) making intelligent, efficient, and on-time decisions to improve the buildings’ performance. This paper presents a comprehensive systematic survey on using AI-big data analytics in BAMSs. It covers various AI-based tasks, e.g. load forecasting, water management, indoor environmental quality monitoring, occupancy detection, etc. The first part of this paper adopts a well-designed taxonomy to overview existing frameworks. A comprehensive review is conducted about different aspects, including the learning process, building environment, computing platforms, and application scenario. Moving on, a critical discussion is performed to identify current challenges. The second part aims at providing the reader with insights into the real-world application of AI-big data analytics. Thus, three case studies that demonstrate the use of AI-big data analytics in BAMSs are presented, focusing on energy anomaly detection in residential and office buildings and energy and performance optimization in sports facilities. Lastly, future directions and valuable recommendations are identified to improve the performance and reliability of BAMSs in intelligent buildings
    corecore